

# **Methodology in Combination** Prevention

#### **Jim Hughes University of Washington SCHARP/FHCRC**







**U.S. Department of Health and Human Services** NATIONAL INSTITUTES OF HEALTH NATIONAL INSTITUTE ON DRUG ABUSE

# **Key Scientific Issues**

IV PREVENTION TRIALS NETWORK

- Effect of the package or the individual components?
  - Are components separable?
  - Synergy/Redundancy of components?
- Short-term vs long-term effects; direct vs indirect effects
- Relationship between coverage and incidence
- Generalizability (across sites, populations)

# **Methodological Issues**

- Outcome measurement
  - Incidence

IV PREVENTION TRIALS NETWORK

- Prevalence
- Process/surrogate outcomes (e.g. Coverage)
- Using surveillance data
- Trial Design
  - Individual vs cluster randomization
  - Two arm (all vs none)
  - Factorial
  - Implementation (e.g. stepped wedge)



### Outcomes

- HIV incidence
  - Gold standard for measuring intervention effect
  - Cohorts, cross-sectional incidence
  - Expensive, difficult to measure
- HIV prevalence
  - Easier to measure than incidence
  - Lags incidence effect (except, possibly, in teens)
- Process outcomes (e.g. number of MC done, proportion of population tested)
  - Easiest to measure
  - Effects often seen first on process measures
  - May be used for evaluating interventions <u>where relationship with HIV</u> incidence has previously been established
  - Most useful for phase 2 studies, establishing mechanisms in conjunction with HIV incidence outcomes



### Outcomes

- Using surveillance data (e.g. HPTN 065)
  - Reduces study cost
  - May be lower "quality" compared to research study (more missing, incomplete, errors)
  - (Maybe) only aggregate data available
  - Subject to changes in procedures and policies that are not under the control of the investigator

## Level of randomization

Individual level randomization

V PREVENTION TRIALS NETWORK

- Appropriate when the intervention is delivered to individuals and outcome measured on same individuals
- Cluster level randomization
  - Appropriate when the intervention is delivered to groups; or when outcome is measured on different individuals from those who received intervention
  - Measures "real world" effect
  - Challenges: contamination/crossover; baseline balance; evolving SOC; testing in control communities; delay in effect



#### **Timing of effects in CRT**





## Design

- Two-arm trial
  - Assess entire package
  - Components not separable
  - Most components inexpensive or unlikely to have significant effect
- Factorial
  - Interest in effect of individual components or synergy/redundancy
  - Two (or more) components expensive



#### **Factorial Designs**

|                |      | Intervention A |            |  |
|----------------|------|----------------|------------|--|
|                |      | А              | no A       |  |
| Intervention B | В    | A,B            | no A, B    |  |
|                | no B | A, no B        | no A, no B |  |

- Simultaneously addresses questions about marginal effects, incremental effects, combined effect
- Possible for interventions to be applied at different levels i.e. A – community; B – individual



### **Factorial Designs**

- Highly efficient (multiple trials for the price of one) IF individual tx's have independent modes of action
  - Independent:

|          | RR          | RD      |  |
|----------|-------------|---------|--|
| Tx A     | .8          | 05      |  |
| Tx B     | .7          | 03      |  |
| Combined | .8*.7 = .56 | 0503=08 |  |

 As modes of action become more dependent, interpretation is more difficult and efficiency gains lost



#### **Two-arm trial**

- Compare "All" vs "None"
- Logistically easier, maybe smaller than factorial
- Difficult to determine effects of individual components
  - Variations in coverage across sites form an observational study
  - Detailed measurement of coverage outcomes in space and time are critical



#### **Two-arm trial**

#### Assessing contribution of individual components

- Statistical approach regression
  - Cluster-specific incidence as outcome, component coverages as predictors
  - Need careful consideration of temporal relationships, interactions
  - Minimal assumptions
  - Yields "narrow" predictions
- Modeling approach
  - Incidence, component coverage, biologic and behavioral parameters as inputs (cluster, subgroup-specific)
  - "Fit" model using trial data to estimate component effects
  - Assumptions about model structure, values of other parameters may be influential
  - o "Broader" predictions possible



### **Stepped Wedge**

| Time |   |   |   |   |  |  |  |
|------|---|---|---|---|--|--|--|
| 1    | 2 | 3 | 4 | 5 |  |  |  |
| 0    | X | X | X | X |  |  |  |
| 0    | Ο | X | X | Χ |  |  |  |
| 0    | 0 | 0 | X | X |  |  |  |
| 0    | 0 | 0 | 0 | X |  |  |  |

- •Time of crossover is randomized; crossover is unidirectional
- •Need to be able to measure outcome on each unit at each time step
- •Multiple observations per unit; observations need to be "in sync" to control for time trends (assumed similar across clusters)
- •If CRT, then individuals at each time can be same (cohort) or different (cross-sectional)



## **Stepped Wedge**

- Advantages
  - Useful for implementation research
  - Fewer clusters
  - Addresses logistic, social, ethical concerns
  - Can study effect of time on treatment
- Disadvantages
  - Long time to completion (potential for contamination, external events)
  - Intentional confounding of time, treatment
  - Delayed effects reduce power



#### Conclusions

- Scientific questions should drive design
- Multiple intervention targets, levels, indirect effects and timing of effects all pose key design challenges in combination intervention trials
- Analyses of process outcomes likely will yield valuable insights, but should be calibrated to HIV incidence



#### Acknowledgements

 Sponsored by NIAID, NIDA, NIMH under Cooperative Agreement # UM1 AI068619